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Review

e Three common ways of storing graphs

— Sequential representation

- adjacency matrix

— Linked representation
o linked list

— Adjacency multi-list

 Search algorithms
- BFS
- DFS



Spanning Tree

« A spanning tree of a connected and undirected graph G is a
sub-graph of G which is a tree that connects all the vertices
together

— A graph G can have many different spanning trees
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Minimum Spanning Tree.

« A minimum spanning tree (MST) is defined as a spanning
tree with weight less than or equal to the weight of every
other spanning tree

— We can assign weights to each edge, and use it to assign a
weight to a spanning tree by calculating the sum of the weights
of the edges in that spanning
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Minimum Spanning Tree..

« Properties

— Possible multiplicity
 There can be multiple minimum spanning trees of the same weight

« Particularly, if all the weights are the same, then every spanning
tree will be minimum

— Uniqueness

« When each edge in the graph is assigned a different weight, then
there will be only one unique minimum spanning tree

- Simplicity
 For an unweighted graph, any spanning tree is a minimum
spanning tree



Minimum Spanning Tree...

e Minimum spanning trees can be computed quickly and easily
to provide optimal solutions

— Prim’s algorithm

— Kruskal’s algorithm



Explore Neighboring —Select Minimum Edge —Add Vertex to MST

Prim’s Algorithm.

e Prim’s algorithm is a greedy algorithm that is used to form
a minimum spanning tree for a connected weighted
undirected graph

— Tree vertices
- Vertices that are a part of the minimum spanning tree T
— Fringe (Neighboring) vertices

 Vertices that are currently not a part of T, but are adjacent to some
tree vertex

— Unseen vertices

» Vertices that are neither tree vertices nor fringe vertices fall under
this category

Step 1: Select a starting vertex
Step 2: Repeat Steps 3 and 4 until there are fringe vertices

Step 3: Select an edge e connecting the tree vertex and
fringe vertex that has minimum weight
Step 4: Add the selected edge and the vertex to the

minimum spanning tree T
[END OF LOOP]
Step 5: EXIT



Explore Neighboring —Select Minimum Edge —Add Vertex to MST

Prim’s Algorithm..

 Construct a minimum spanning tree of the graph by using
Prim’s algorithm
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Step 1

Step 1: Choose a starting vertex A

Step 2: Add the fringe vertices (that are
adjacent to A)

Step 3: Since the edge connecting A and
C has less weight, add C to the tree

Step 4: Add the fringe vertices (that are adjacent to C)

Step 5: Since the edge connecting C and B has less weight, add
B to the tree
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Explore Neighboring —Select Minimum Edge —Add Vertex to MST

Prim’s Algorithm...

— Step 6: Add the fringe vertices (that are adjacent to B)

— Step 7: Since the edge connecting B and D has less weight, add
D to the tree

— Step 8: Add E to the tree
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Explore Neighboring —Select Minimum Edge —Add Vertex to MST

Prim’s Algorithm....

« By looking!

10



Explore Neighboring —Select Minimum Edge —Add Vertex to MST

Prim’s Algorithm.....

 Construct a minimum spanning tree of the graph &) 6 g\ 7 ©
by using Prim’s algorithm from vertex D 4




Kruskal’s Algorithm.

« Kruskal's algorithm is used to find the minimum spanning
tree for a connected weighted undirected graph

— If the graph is not connected, then it finds a minimum
spanning forest

Step 1: Create a forest in such a way that each graph is a separate
tree.

Step 2: Create a priority queue Q that contains all the edges of the
graph.

Step 3: Repeat Steps 4 and 5 while Q is NOT EMPTY

Step 4: Remove an edge from Q

Step 5: IF the edge obtained in Step 4 connects two different trees,
then Add it to the forest (for combining two trees into one
tree).
ELSE

Discard the edge
Step 6: END
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Kruskal’s Algorithm..

« Apply Kruskal’s algorithm on the given graph

— Initial:
o F = {{A},{B},{C},{D},{E}, {F}}
e MST = {}

« Priority Queue Q = {(A, D), (E,F), (C,E), (E,D)
(C,D), (D, F), (A, C), (A, B), (B, C)}
— Stepl:
« Remove the edge (A, D) from Q

F={{A D}, {B}, {C}, {E}, {F}}
MST = {A, D}
Q={(E, F), (C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)}

— Step2:
« Remove the edge (E, F) from Q

F ={{A, D}, {B}, {C}, {E., F}}
MST = {(A, D), (E, F)}
Q ={(C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)}
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Kruskal’s Algorithm...

— Step3:

« Remove the edge (C, E) from Q
F={{A D}, {B}, {C,E, F}}
MST = {(A, D), (C, E), (E, F)}
Q={(E, D), (C,D), (D, F), (A, C), (A B), (B, C)}

— Step4:

« Remove the edge (E, D) from Q

F={{A C,DEF}{B}}
MST = {(A, D), (C, E), (E, F), (E, D)}
Q={(C, D), (D, F), (A C) (A B) (B, C)}

— Step5:
« Remove the edge (C, D) from Q

The edge does not connect different trees, so simply discard this
edge
F = {{A,C,D, E, F}, {B}}
MST = {(A, D), (C, E), (E, F), (E, D)}
Q ={(D, F), (A, C), (A, B), (B, C)}
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Kruskal’s Algorithm....

— Step6:
« Remove the edge (D, F) from Q

The edge does not connect different trees, so simply discard this
edge
F = {{A,C,D,E, F}, {B}}
MST = {(A, D), (C, E), (E, F), (E, D)}
Q ={(A, C), (A, B), (B, C);

— Step7:
« Remove the edge (A, C) from Q
The edge does not connect different trees, so simply discard this

edge

F = {{A,C,D,E, F}, {B}}
MST = {(A, D), (C, E), (E, F), (E, D)}
Q = {(A, B), (B, )}
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Kruskal’s Algorithm.....

— Step8:
« Remove the edge (A, B) from Q

F={A B,C,D,E,F}
MST ={(A, D), (C, E), (E, F), (E, D), (A, B)}
Q ={(B, C)}

— Step8:
« Remove the edge (B, C) from Q

The edge does not connect different trees, so simply discard this
edge

F={A,B,C,D,E,F}
MST = {(A, D), (C, E), (E, F), (E, D), (A, B)}
Q={
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General Formulation

« They each use a specific rule to determine a safe edge in line

3 of GENERIC-MST

GENERIC-MST(G, w)

1 A=90

2 while A does not form a spanning tree
3 find an edge (u, v) that is|safe| for A
4

5

A= AU{(u,v)}
return A

— In Prim’s algorithm
 The set A forms a single tree

« The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree

— In Kruskal’s algorithm
« The set A is a forest whose vertices are all those of the given graph

 The safe edge added to A is always a least-weight edge in the
graph that connects two distinct components (trees)
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Questions?

kychen@mail.ntust.edu.tw
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